

- Intrinsic resistance
- Replacement with a more resistant species
- Replacement with a more resistant strain
- Transient gene expressions that cause temporary resistance (epigenetic resistance)
- Alterations in cell type (?)
- Genomic instability within a single strain (population bottleneck)

Population bottleneck (genetic bottleneck)

- Evolutionary event in which a population or species is killed or otherwise prevented from reproducing, and the population is reduced by 50% or more.
- A graph of this change resembles the neck of a bottle, from wide to narrow; hence the name.
- Population bottlenecks increase genetic drift, as the rate of drift is inversely proportional to the population size.
- It also changes the relationship of natural selection.

Compensatory Mutations

- Wild-type is best adapted, most fit
- Mutation (or acquisition of resistance genes) comes at a cost
- Cost can be compensated by
 loss of resistance (by reversion or recombination)
 - □ by compensatory mutations
- Compensatory mutations are
 environmentally determined
 a consequence of a low recombination rate

Compensatory Mutations

- Favored when the rate of their generation exceeds reversion
- Bottlenecks play an important role
- Function to maintain resistance (implications for antibiotic control)
- Less likely to occur if gene exchange or recombination is common

Antibacterial resistance

Involve a stable genetic change.

- Alteration of bacterial genetic:
 - Mutation
 - Reduce target affinity
 - Allow production of drug-modifying enzyme
 - □ Transfer of genetic material
 - Transduction
 - Transformation
 - Conjugation

Genetics of Resistance

- Vertical genetic exchange: generation
 Fluoroquinolone resistance in all bacterial species
 - □ All drug resistance in Mtb
 - □ Comparatively less advantageous
- Horizontal, transfer of mobile element and selection between bacteria:
 - Transducing phage (e.g., transfer of S. aureus bla plasmid)
 - Transformation, homologous recombination (e.g., penicillin-resistance in pneumococci)
 - Conjugation (e.g., vanA resistance of enterococci)
 - Comparatively more advantageous

Toxins and Mobile Elements

Disease	Toxin	Organism	Element
Anthrax	Anthrax toxin	Bacillus anthracis	Plasmid
Cholera	Cholera toxin	Vibrio cholerae	Prophage
Food poisoning	Cpe toxin	Clostridium perfringens	Transposon
Toxic shock syndrome	TSST-1	Staphylococcus aureus	Pathogenicit y island

Mobile Elements Involved in Resistance Features Element Insertion sequence Inverted repeats + recombinases for site specific insertion, self copy Transposon Insertion sequence + other elements Integrase + integrase recognition site, Integron do not self copy, not themselves mobile Chromosomal Pathogenicity island-like with att sites cassette and recombinases, can be relatively large DNA transfer knock-off of bacterial Conjugative plasmid type IV secretion system

Integrons

- An integrase, gene cassette(s), and a cassette integration site (*att*), a strong promoter
- Not themselves mobile, but excise and integrate cassettes that are found on transposons, plasmids, chromosome
- Two major groups: resistance integrons and super-integrons (presumed ancestor, ~100 kb)

Integron, gene cassette, attC

- The backbone structure of an integron contains a conserved region encoding an integrase (*int1*) and a variable region with integrated gene cassettes.
- A gene cassette usually contains a single open reading frame and a recombination site, the *attC* site (59base element).
- The attC sites consist of an inverse core site and a core site separated by an intervening palindrome of variable length.
- The inverse core site is defined as RYYYAAC and the core site as GTTRRRY (R = A or G, Y = C or T).

Vancomycin A glycopeptide, ~1450 daltons Inhibitor of cell wall synthesis Target: D-alanyl-D-alanine Interferes with transglycosylation and transpeptidation (crosslinking) reactions Bactericidal

<i>.</i>		Outs	ide cell			
D-ala D-ala L-lys D-glu L-ala TG NAG-NAM	D-ala D-ala L-lys D-glu L-ala I NAG-NAM –N	D-ala D-ala L-lys D-glu L-ala I AG-NAM – N	D-ala D-ala L-lys D-glu L-ala I AG-NAM			
Inside cell TG = transglycosylase						

- Aminoglycosides → Altered ribosomal protein
- Beta-lactam → Altered or new penicillin binding proteins
- Erythromycin → Ribosomal RNA methylation
- Quinolones → Altered DNA gyrase
- Sulphonamides → New drug-insensitive dihydropteroate synthase

Alternation of target site

- Tetracyclines → Ribosomal protection
- Trimethoprim → New drug-insensitive dihydrofolate reductase
- Vancomycin → Altered cell wall stem peptide

Drug-destroying mechanisms

- Aminoglycosides → Acetyltransferase, Nucleotidetransferase, Phosphotransferase.
- Beta-lactamase → Beta lactamase
- Chloramphenicol \rightarrow Acetyltransferase

What drugs act as antifungal agents?

- present more difficult therapeutic problems than do bacterial infections.
- few agents that can be used to treat fungal infections. The fungal cell wall may be considered to be a prime target for selectively toxic antifungal agents because of its chitin structure, absent from human cells.
- No clinically available inhibitor of chitin synthesis analogous to the β-lactams exists at present, even though much effort is being directed towards developing such agents.

ANTIFUNGAL DRUGS by mode of action

- Membrane disrupting agents
 - Amphotericin B, nystatin
- Ergosterol synthesis inhibitors

Azoles, allylamines, morpholine

- Nucleic acid inhibitor
 Flucytosine
- Anti-mitotic (spindle disruption)
 Griseofulvin

- Glucan synthesis inhibitors
 Echinocandins
- Chitin synthesis inhibitor Nikkomycin
- Protein synthesis inhibitors
 Sordarins, azasordarins

Resistance to Amphotericin B

- Technical difficulties in detection of resistance *in vitro*
- In vivo resistance is rare
 - *C. lusitaniae, C. krusei C. neoformans Trichosporon* spp. *A. terreus S. apiospermum Fusarium* spp.

•

Mechanisms of Amphotericin B Resistance

- Reduced ergosterol content (defective ERG2 or ERG3 genes)
- Alterations in sterol content (fecosterol, episterol: reduced affinity)
- Alterations in sterol to phospholipid ratio
- Reorientation or masking of ergosterol
- Stationary growth phase
- Previous exposure to azoles

Mechanisms of Resistance to Azoles

- Alteration of lanosterol (14-alpha) demethylase
- Overexpression of lanosterol demethylase
- Energy-dependent efflux systems

 a. Major facilitator superfamily (MFS) proteins
 (BEN^r = MDR1 of *Candida...*)

b. ATP-binding cassette (ABC) superfamily proteins (MDR, CDR of *Candida*)

 Changes in sterol and/or phospholipid composition of fungal cell membrane (decreased permeability)

Azole Resistance Molecular Aspects

- Single point mutation of ERG11 gene
 ⇒ Altered lanosterol demethylase
- Overexpression of ERG11 gene
 ⇒Increased production of lanosterol demethylase
- Alterations in ERG3 or ERG5 genes
 ⇒Production of low affinity sterols
- Increase in mRNA levels of CDR1 or MDR1 genes
 ⇒ Decreased accumulation of the azole in fungal cell

Resistance to Echinocandins

PRIMARY

C. neoformans

Fusarium spp.

SECONDARY

The only licensed member is caspofungin (Jan 2001, USA). Resistant mutants due to therapy are not available.

(?)

Echinocandin Resistance Molecular Aspects

- FKS1 encodes glucan synthase
- GNS1 encodes an enzyme involved in fatty acid elongation

Resistance is observed following laboratory derived mutations in FKS1 or GNS1

• Other mechanisms (?)

Future Directions to Avoid Development of Resistance

- Proper dosing strategies
- Restricted and well-defined indications for prophylaxis with azoles
 - Fungi will continue to develop NEW resistance mechanisms!..

Final Word

- Antifungal resistance is a complex, gradual and multifactorial issue
- Several uncertainties remain
- Molecular assays to detect resistance are not simple
- The best way to improve the efficacy of antifungal therapy is to improve the immune status of the host

Closing Comments

- Given enough time and pressure, resistance will eventually occur when possible acquisition of resistance (and probably other traits as well) occurs by horizontal gene transfer
- Compensatory mutations are a way to mitigate the cost of resistance and maintain the trait in a fit pool (and there may be no way back)
- Hopefully, a better understanding of microbial pathogenesis can lead to reduce antibiotic pressure
- Have a happy day!

